Copied to
clipboard

G = C32×Dic12order 432 = 24·33

Direct product of C32 and Dic12

direct product, metabelian, supersoluble, monomial

Aliases: C32×Dic12, C3310Q16, C12.10C62, C8.(S3×C32), C24.1(C3×C6), C24.13(C3×S3), (C3×C24).19S3, (C3×C24).14C6, C6.39(C3×D12), (C3×C6).86D12, C31(C32×Q16), C327(C3×Q16), C12.114(S3×C6), C6.3(D4×C32), (C3×C12).233D6, (C32×C24).2C2, Dic6.1(C3×C6), (C32×C6).54D4, C2.5(C32×D12), (C3×Dic6).10C6, (C32×Dic6).6C2, (C32×C12).81C22, C4.10(S3×C3×C6), (C3×C6).46(C3×D4), (C3×C12).85(C2×C6), SmallGroup(432,468)

Series: Derived Chief Lower central Upper central

C1C12 — C32×Dic12
C1C3C6C12C3×C12C32×C12C32×Dic6 — C32×Dic12
C3C6C12 — C32×Dic12
C1C3×C6C3×C12C3×C24

Generators and relations for C32×Dic12
 G = < a,b,c,d | a3=b3=c24=1, d2=c12, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 280 in 140 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C24, C24, C24, Dic6, C3×Q8, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, Dic12, C3×Q16, C32×C6, C3×C24, C3×C24, C3×C24, C3×Dic6, Q8×C32, C32×Dic3, C32×C12, C3×Dic12, C32×Q16, C32×C24, C32×Dic6, C32×Dic12
Quotients: C1, C2, C3, C22, S3, C6, D4, C32, D6, C2×C6, Q16, C3×S3, C3×C6, D12, C3×D4, S3×C6, C62, Dic12, C3×Q16, S3×C32, C3×D12, D4×C32, S3×C3×C6, C3×Dic12, C32×Q16, C32×D12, C32×Dic12

Smallest permutation representation of C32×Dic12
On 144 points
Generators in S144
(1 29 60)(2 30 61)(3 31 62)(4 32 63)(5 33 64)(6 34 65)(7 35 66)(8 36 67)(9 37 68)(10 38 69)(11 39 70)(12 40 71)(13 41 72)(14 42 49)(15 43 50)(16 44 51)(17 45 52)(18 46 53)(19 47 54)(20 48 55)(21 25 56)(22 26 57)(23 27 58)(24 28 59)(73 144 108)(74 121 109)(75 122 110)(76 123 111)(77 124 112)(78 125 113)(79 126 114)(80 127 115)(81 128 116)(82 129 117)(83 130 118)(84 131 119)(85 132 120)(86 133 97)(87 134 98)(88 135 99)(89 136 100)(90 137 101)(91 138 102)(92 139 103)(93 140 104)(94 141 105)(95 142 106)(96 143 107)
(1 9 17)(2 10 18)(3 11 19)(4 12 20)(5 13 21)(6 14 22)(7 15 23)(8 16 24)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)(49 57 65)(50 58 66)(51 59 67)(52 60 68)(53 61 69)(54 62 70)(55 63 71)(56 64 72)(73 89 81)(74 90 82)(75 91 83)(76 92 84)(77 93 85)(78 94 86)(79 95 87)(80 96 88)(97 113 105)(98 114 106)(99 115 107)(100 116 108)(101 117 109)(102 118 110)(103 119 111)(104 120 112)(121 137 129)(122 138 130)(123 139 131)(124 140 132)(125 141 133)(126 142 134)(127 143 135)(128 144 136)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 97 13 109)(2 120 14 108)(3 119 15 107)(4 118 16 106)(5 117 17 105)(6 116 18 104)(7 115 19 103)(8 114 20 102)(9 113 21 101)(10 112 22 100)(11 111 23 99)(12 110 24 98)(25 90 37 78)(26 89 38 77)(27 88 39 76)(28 87 40 75)(29 86 41 74)(30 85 42 73)(31 84 43 96)(32 83 44 95)(33 82 45 94)(34 81 46 93)(35 80 47 92)(36 79 48 91)(49 144 61 132)(50 143 62 131)(51 142 63 130)(52 141 64 129)(53 140 65 128)(54 139 66 127)(55 138 67 126)(56 137 68 125)(57 136 69 124)(58 135 70 123)(59 134 71 122)(60 133 72 121)

G:=sub<Sym(144)| (1,29,60)(2,30,61)(3,31,62)(4,32,63)(5,33,64)(6,34,65)(7,35,66)(8,36,67)(9,37,68)(10,38,69)(11,39,70)(12,40,71)(13,41,72)(14,42,49)(15,43,50)(16,44,51)(17,45,52)(18,46,53)(19,47,54)(20,48,55)(21,25,56)(22,26,57)(23,27,58)(24,28,59)(73,144,108)(74,121,109)(75,122,110)(76,123,111)(77,124,112)(78,125,113)(79,126,114)(80,127,115)(81,128,116)(82,129,117)(83,130,118)(84,131,119)(85,132,120)(86,133,97)(87,134,98)(88,135,99)(89,136,100)(90,137,101)(91,138,102)(92,139,103)(93,140,104)(94,141,105)(95,142,106)(96,143,107), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(49,57,65)(50,58,66)(51,59,67)(52,60,68)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88)(97,113,105)(98,114,106)(99,115,107)(100,116,108)(101,117,109)(102,118,110)(103,119,111)(104,120,112)(121,137,129)(122,138,130)(123,139,131)(124,140,132)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,97,13,109)(2,120,14,108)(3,119,15,107)(4,118,16,106)(5,117,17,105)(6,116,18,104)(7,115,19,103)(8,114,20,102)(9,113,21,101)(10,112,22,100)(11,111,23,99)(12,110,24,98)(25,90,37,78)(26,89,38,77)(27,88,39,76)(28,87,40,75)(29,86,41,74)(30,85,42,73)(31,84,43,96)(32,83,44,95)(33,82,45,94)(34,81,46,93)(35,80,47,92)(36,79,48,91)(49,144,61,132)(50,143,62,131)(51,142,63,130)(52,141,64,129)(53,140,65,128)(54,139,66,127)(55,138,67,126)(56,137,68,125)(57,136,69,124)(58,135,70,123)(59,134,71,122)(60,133,72,121)>;

G:=Group( (1,29,60)(2,30,61)(3,31,62)(4,32,63)(5,33,64)(6,34,65)(7,35,66)(8,36,67)(9,37,68)(10,38,69)(11,39,70)(12,40,71)(13,41,72)(14,42,49)(15,43,50)(16,44,51)(17,45,52)(18,46,53)(19,47,54)(20,48,55)(21,25,56)(22,26,57)(23,27,58)(24,28,59)(73,144,108)(74,121,109)(75,122,110)(76,123,111)(77,124,112)(78,125,113)(79,126,114)(80,127,115)(81,128,116)(82,129,117)(83,130,118)(84,131,119)(85,132,120)(86,133,97)(87,134,98)(88,135,99)(89,136,100)(90,137,101)(91,138,102)(92,139,103)(93,140,104)(94,141,105)(95,142,106)(96,143,107), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(49,57,65)(50,58,66)(51,59,67)(52,60,68)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88)(97,113,105)(98,114,106)(99,115,107)(100,116,108)(101,117,109)(102,118,110)(103,119,111)(104,120,112)(121,137,129)(122,138,130)(123,139,131)(124,140,132)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,97,13,109)(2,120,14,108)(3,119,15,107)(4,118,16,106)(5,117,17,105)(6,116,18,104)(7,115,19,103)(8,114,20,102)(9,113,21,101)(10,112,22,100)(11,111,23,99)(12,110,24,98)(25,90,37,78)(26,89,38,77)(27,88,39,76)(28,87,40,75)(29,86,41,74)(30,85,42,73)(31,84,43,96)(32,83,44,95)(33,82,45,94)(34,81,46,93)(35,80,47,92)(36,79,48,91)(49,144,61,132)(50,143,62,131)(51,142,63,130)(52,141,64,129)(53,140,65,128)(54,139,66,127)(55,138,67,126)(56,137,68,125)(57,136,69,124)(58,135,70,123)(59,134,71,122)(60,133,72,121) );

G=PermutationGroup([[(1,29,60),(2,30,61),(3,31,62),(4,32,63),(5,33,64),(6,34,65),(7,35,66),(8,36,67),(9,37,68),(10,38,69),(11,39,70),(12,40,71),(13,41,72),(14,42,49),(15,43,50),(16,44,51),(17,45,52),(18,46,53),(19,47,54),(20,48,55),(21,25,56),(22,26,57),(23,27,58),(24,28,59),(73,144,108),(74,121,109),(75,122,110),(76,123,111),(77,124,112),(78,125,113),(79,126,114),(80,127,115),(81,128,116),(82,129,117),(83,130,118),(84,131,119),(85,132,120),(86,133,97),(87,134,98),(88,135,99),(89,136,100),(90,137,101),(91,138,102),(92,139,103),(93,140,104),(94,141,105),(95,142,106),(96,143,107)], [(1,9,17),(2,10,18),(3,11,19),(4,12,20),(5,13,21),(6,14,22),(7,15,23),(8,16,24),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48),(49,57,65),(50,58,66),(51,59,67),(52,60,68),(53,61,69),(54,62,70),(55,63,71),(56,64,72),(73,89,81),(74,90,82),(75,91,83),(76,92,84),(77,93,85),(78,94,86),(79,95,87),(80,96,88),(97,113,105),(98,114,106),(99,115,107),(100,116,108),(101,117,109),(102,118,110),(103,119,111),(104,120,112),(121,137,129),(122,138,130),(123,139,131),(124,140,132),(125,141,133),(126,142,134),(127,143,135),(128,144,136)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,97,13,109),(2,120,14,108),(3,119,15,107),(4,118,16,106),(5,117,17,105),(6,116,18,104),(7,115,19,103),(8,114,20,102),(9,113,21,101),(10,112,22,100),(11,111,23,99),(12,110,24,98),(25,90,37,78),(26,89,38,77),(27,88,39,76),(28,87,40,75),(29,86,41,74),(30,85,42,73),(31,84,43,96),(32,83,44,95),(33,82,45,94),(34,81,46,93),(35,80,47,92),(36,79,48,91),(49,144,61,132),(50,143,62,131),(51,142,63,130),(52,141,64,129),(53,140,65,128),(54,139,66,127),(55,138,67,126),(56,137,68,125),(57,136,69,124),(58,135,70,123),(59,134,71,122),(60,133,72,121)]])

135 conjugacy classes

class 1  2 3A···3H3I···3Q4A4B4C6A···6H6I···6Q8A8B12A···12Z12AA···12AP24A···24AZ
order123···33···34446···66···68812···1212···1224···24
size111···12···2212121···12···2222···212···122···2

135 irreducible representations

dim111111222222222222
type++++++-+-
imageC1C2C2C3C6C6S3D4D6Q16C3×S3D12C3×D4S3×C6Dic12C3×Q16C3×D12C3×Dic12
kernelC32×Dic12C32×C24C32×Dic6C3×Dic12C3×C24C3×Dic6C3×C24C32×C6C3×C12C33C24C3×C6C3×C6C12C32C32C6C3
# reps1128816111282884161632

Matrix representation of C32×Dic12 in GL3(𝔽73) generated by

800
010
001
,
800
0640
0064
,
7200
0300
02256
,
7200
0347
01239
G:=sub<GL(3,GF(73))| [8,0,0,0,1,0,0,0,1],[8,0,0,0,64,0,0,0,64],[72,0,0,0,30,22,0,0,56],[72,0,0,0,34,12,0,7,39] >;

C32×Dic12 in GAP, Magma, Sage, TeX

C_3^2\times {\rm Dic}_{12}
% in TeX

G:=Group("C3^2xDic12");
// GroupNames label

G:=SmallGroup(432,468);
// by ID

G=gap.SmallGroup(432,468);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,504,533,764,3784,102,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^24=1,d^2=c^12,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽